Обучение и профессиональная подготовка специалистов климатического бизнеса в Москве | Верконт сервис
Блог

Дросселирующие устройства в холодильных установках

Процесс дросселирования, то есть понижение давления, является неотъемлемым элементом холодильного цикла. Именно благодаря этому процессу и существует разница давления между зоной высокого давления и зоной низкого давления холодильного контура. Элемент холодильной системы, в котором происходит процесс дросселировния, называется дросселирующим устройством или расширительным устройством.

 

Рис. 1. Процесс дросселирования на диаграмме.

Дросселирование хладагента обеспечивается многократным снижением пропускной способности дросселирующего устройства относительно канала подачи хладагента (жидкостной линии). Это снижение может быть как постоянным, так и изменяемым (регулируемым). Существует несколько типов расширительных устройств.

Виды расширительных устройств.

Нерегулируемые

Как следует из названия, нерегулируемые дросселирующие устройства создают постоянное сопротивление движению хладагента и не реагируют на изменение режимов работы холодильной машины. Нерегулируемое дросселирующие устройство подбирается заранее и, как правило, обеспечивает эффективную работу холодильной системы, только в каком-то одном режиме.

Конструктивно существует большое количество различных нерегулируемых расширительных устройств: дросселирующие шайбы, жиклеры, дюзы и т.д. Однако, самым распространенным, в практических холодильных установках, является дросселирующее устройство в виде капиллярной трубки.

Рис.2. Капиллярная трубка в составе холодильного контура.

                Капиллярная трубка создает сопротивление движению хладагента не столько за счет меньшего диаметра канала, сколько за счет значительного удлинения. Как правило, степень дросселирования капиллярной трубки точно регулируется именно длиной трубки, а не изменением её сечения. В некоторых системах длина капиллярной трубки может достигать нескольких метров, что позволяет отмерять её длину при помощи обычной рулетки или линейки с достаточным уровнем точности.

Рис.3. Медная капиллярная трубка.

                Основным недостатком капиллярной трубки, как и любого нерегулируемого дросселирующего устройства, является неспособность адаптироваться к изменению режима работы холодильной машины. Любое дросселирующее устройство постоянного действия поддерживает только лишь перепад между зонами высокого и низкого давления, но не конкретное значение.        

                В случае, если необходимо поддерживать стабильное давление кипения хладагента, давление конденсации на агрегатах с капиллярными трубками так же должно быть стабильно. Снижение давления конденсации ниже расчетного повлечет за собой снижение давления кипения и общее снижение производительности агрегата, тогда как повышение давления повлечет снижение перегрева и риск гидроудара компрессора.

                Так же постоянные дросселирующие устройства не могут контролировать значение перегрева хладагента на линии всасывания компрессора. Эффективная и безопасная работа установки может обеспечиваться только в  небольшом диапазоне внешних условий.

                Как следствие, нерегулируемые расширительные устройства применяются только в составе небольших агрегатов, работающих в постоянных режимах: бытовых холодильниках, простых кондиционерах и т.д.

Терморегулирующие расширительные вентили (ТРВ)

Для решения описанных недостатков нерегулируемых расширительных устройств, разработаны различные модели дросселирующих устройств регулируемых. Наибольшее распространение среди механических устройств получит так называемый Терморегулирующий расширительный вентиль или ТРВ.

Рис.4. ТРВ в составе холодильной системы.

                Конструктивно ТРВ состоит из дюзы (канала определенного сечения, через который проходит хладагент), запорной иглы (устройства, перекрывающего движение хладагента через дюзу) и термостатирующей системы.

Термостатирующая система, в свою очередь, состоит из мембраны, на которую с одной стороны воздействуют давление хладагента в зоне низкого давления и специальная пружина, а с другой стороны мембрана соединена с термобаллоном (небольшая металлическая капсула, внутри которой находится хладагент, аналогичный заправленному в систему).

 Рис.5 Конструкция ТРВ

                Термобаллон ТРВ устанавливается на линии выхода хладагента из испарителя, где воспринимает на себя температуру выходящего хладагента. В том случае, если давление в термобаллоне (а значит и температура газа на выходе из испарителя) превосходит давление хладагента на значение, определяемое силой пружины, ТРВ открывается и подает хладагент в испаритель. В том случае, если температура газа на выходе снижается, ТРВ ограничивает подачу хладагента в испаритель.

                С точки зрения физических параметров, ТРВ регулирует перегрев хладагента на выходе из испарителя независимо от остальных параметров работы установки.

Электронные дросселирующие устройства

Отдельным пунктом стоит выделить расширительные устройства, управляемые электронными системами: Электронные расширительные вентили или ЭРВ.

ЭРВ контролируют перегрев газа на выходе из испарителя аналогично ТРВ. Различие заключается в методе измерения параметров установки. Если ТРВ использует исключительно механический способ регулирования подачи хладагента, то в состав ЭРВ входи специальный микроконтроллер, воспринимающий информацию о температуре газа и давлении от специальных датчиков. Датчики ЭРВ устанавливаются на контур аналогично термобаллону ТРВ и линии выравнивания.

Контроль работы дросселирующих устройств.

Любое дросселирующие устройство имеет своей целью ограничивать поток хладагента в испаритель таким образом, что бы, с одной стороны, не допустить попадания жидкого хладагента в компрессор, а, с другой стороны, обеспечить максимальное заполнение испарителя.

Основным параметром, определяющим корректность работы дросселирующего устройства, является перегрев хладагента на выходе из испарителя. В системах с нерегулируемым дросселирующим устройством повлиять на перегрев возможно только косвенно – изменяя давление конденсации или количества хладагента в системе.

Таким образом, для контроля работы ТРВ необходимо измерить перегрев.

Высокое значение перегрева может иметь различные причины, поэтому, прежде чем регулировать ТРВ, необходимо убедиться, что изменение перегрева не вызвано недостатком хладагента или потерями давления на жидкостной линии.

Низкое значение перегрева всегда свидетельствует о некорректной работе ТРВ.

Регулировка ТРВ и ЭРВ.

Регулировка ТРВ

В том случае, если значение перегрева отклоняется от номинального, а все иные возможные причины исключены, производится регулировка ТРВ. Настройка ТРВ осуществляется поворотом регулировочного винта.  

Рис.6. Регулировочный винт ТРВ.

                В зависимости от применяемого хладагента и модели вентиля, поворот винта на один оборот может привести к различным изменениям в работе ТРВ. В том случае, если реакция вентиля на вращение регулировочного винта неизвестна, не рекомендуется поворачивать регулировочный винт более чем на один оборот за один прием.

 Рис.7. Вращение регулировочного винта по часовой стрелке увеличивает перегрев. Вращение против часовой стрелки – уменьшает.

                После настройки ТРВ регулировочным винтом, новые замеры перегрева целесообразно производить не ранее чем через 20 минут. В противном случае, перегрев может не успеть стабилизироваться.

Регулировка ЭРВ

ЭРВ, как цифровое устройство, не требует как такового регулирования. Будучи единожды настроенным, микроконтроллер будет поддерживать заданное значение без отклонений.

Ошибки в работе ЭРВ могут быть вызваны либо некорректной первичной настройкой, либо выходом из строя одного из элементов.

Процесс контроля работы ЭРВ сводится к сравнению показаний датчиков давления и температуры с эталонными.

Приглашаем Вас на обучение по курсам: 

- ХП1 – Ремонт и обслуживание холодильного оборудования

На курсе вы обучитесь ремонтировать и производить диагностику холодильников, морозильных камер, ларей, а так же полупромышленных холодильных установок. По окончанию обучения Вы получите удостоверение установленного образца.

- ХП3 – Ремонт и сервисное обслуживание холодильного оборудования

Данный курс в первую очередь будет полезен для сотрудников сервисных служб и рабочего персонала связанного с холодильным оборудованием

- ПХ2 - Сервис и техническое обслуживание холодильного оборудования, работающего на природных хладагентах

Курс предназначен для специалистов с опытом ремонта бытового и полупромышленного холодильного оборудования. По итогу обучения вы получите удостоверение установленного образца, который дает разрешение на обслуживание данных холодильных установок.

В теоретической и практической части обучения, мы расскажем вам о новейших технологиях ремонта и монтажа оборудования. А так же во время практических работ мы предлагаем современные инструменты и новые методики работы.

Для изучения теории слушателям, мы предложим учебное пособие: Экологические аспекты, безопасная эксплуатация, сервис и обслуживание холодильного оборудования и систем кондиционирования воздуха от 2020 года. Пособие подготовлено специалистами нашего учебного центра.

Подробнее о датах практических занятий Вы можете узнать в  разделе Расписание.

Оставьте комментарий
captcha
О НАС

Подготовка специалистов для климатического, холодильного и строительного бизнеса.

ПОДПИСКА НА НОВОСТИ

Для тех, кто заинтересован регулярно (не чаще 1 раза в 2 недели) получать наши новостные рассылки